33 research outputs found

    Improving Wheat Yield Prediction Accuracy Using LSTM‐RF Framework Based on UAV Thermal Infrared and Multispectral Imagery

    Full text link
    peer reviewedYield prediction is of great significance in agricultural production. Remote sensing technology based on unmanned aerial vehicles (UAVs) offers the capacity of non‐intrusive crop yield prediction with low cost and high throughput. In this study, a winter wheat field experiment with three levels of irrigation (T1 = 240 mm, T2 = 190 mm, T3 = 145 mm) was conducted in Henan province. Multispectral vegetation indices (VIs) and canopy water stress indices (CWSI) were obtained using an UAV equipped with multispectral and thermal infrared cameras. A framework combining a long short‐term memory neural network and random forest (LSTM‐RF) was proposed for predicting wheat yield using VIs and CWSI from multi‐growth stages as predictors. Validation results showed that the R2 of 0.61 and the RMSE value of 878.98 kg/ha was achieved in predicting grain yield using LSTM. LSTM‐RF model obtained better prediction results compared to the LSTM with n R2 of 0.78 and RMSE of 684.1 kg/ha, which is equivalent to a 22% reduction in RMSE. The results showed that LSTM‐RF considered both the time‐series characteristics of the winter wheat growth process and the non‐linear characteristics between remote sensing data and crop yield data, providing an alternative for accurate yield prediction in modern agricultural management

    Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter

    Full text link
    Ultrahigh-intensity lasers (1018^{18}-1022^{22}W/cm2^{2}) have opened up new perspectives in many fields of research and application [1-5]. By irradiating a thin foil, an ultrahigh accelerating field (1012^{12} V/m) can be formed and multi-MeV ions with unprecedentedly high intensity (1010^{10}A/cm2^2) in short time scale (\simps) are produced [6-14]. Such beams provide new options in radiography [15], high-yield neutron sources [16], high-energy-density-matter generation [17], and ion fast ignition [18,19]. An accurate understanding of the nonlinear behavior of beam transport in matter is crucial for all these applications. We report here the first experimental evidence of anomalous stopping of a laser-generated high-current proton beam in well-characterized dense ionized matter. The observed stopping power is one order of magnitude higher than single-particle slowing-down theory predictions. We attribute this phenomenon to collective effects where the intense beam drives an decelerating electric field approaching 1GV/m in the dense ionized matter. This finding will have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure

    Energy loss enhancement of very intense proton beams in dense matter due to the beam-density effect

    Full text link
    Thoroughly understanding the transport and energy loss of intense ion beams in dense matter is essential for high-energy-density physics and inertial confinement fusion. Here, we report a stopping power experiment with a high-intensity laser-driven proton beam in cold, dense matter. The measured energy loss is one order of magnitude higher than the expectation of individual particle stopping models. We attribute this finding to the proximity of beam ions to each other, which is usually insignificant for relatively-low-current beams from classical accelerators. The ionization of the cold target by the intense ion beam is important for the stopping power calculation and has been considered using proper ionization cross section data. Final theoretical values agree well with the experimental results. Additionally, we extend the stopping power calculation for intense ion beams to plasma scenario based on Ohm's law. Both the proximity- and the Ohmic effect can enhance the energy loss of intense beams in dense matter, which are also summarized as the beam-density effect. This finding is useful for the stopping power estimation of intense beams and significant to fast ignition fusion driven by intense ion beams

    Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma

    Full text link
    We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate (C9_{9}H16_{16}O8_{8}) foam of 2 mg/cm3^{-3} density, and 11-mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. The plasma parameters were diagnosed to be Te_{e}=17 eV and ne_{e}=4 ×\times 1020^{20} cm3^{-3}. The average charge states passing through the plasma were observed to be higher than those predicted by the commonly-used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. In previsous measurement with partially ionized plasma from gas discharge and z-pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we were able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-Glass laser radiation. The finding is important for heavy ion beam driven high energy density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference

    The complete plastid genome of Lilium regale E.H.Wilson

    No full text
    Lilium regale E.H.Wilson is a native lily species in western Sichuan of China and an important resource for lily breeding. In this study, the plastid genome of L. regale was assembled de novo using the next-generation sequencing data. The plastid genome of L. regale was 152,998 bp in length, with a typical quadripartite circle structure consisting of a small single-copy region of 17,529 bp, a large single-copy region of 82,375 bp, and a pair of inverted repeats of 26,547 bp each. A total of 137 different genes were predicted, including 84 protein-coding genes, 38 transfer RNA genes, 8 ribosomal RNA genes, and 7 pseudogenes. The overall GC content of the plastid genome was 36.98%. Phylogenetic analysis revealed that L. regale is most closely related to Lilium leucanthum

    Study on Wellbore Stability of Multilateral Wells under Seepage-Stress Coupling Condition Based on Finite Element Simulation

    No full text
    The use of multilateral wells is an important method to effectively develop complex oil reservoirs, and wellbore stability research of multilateral wells is of great importance. In the present study, the effects of formation fluids and rock damage were not taken into account by the wellbore stability model. Therefore, finite element analysis (FEA) software was used to establish a three-dimensional (3D) seepage-stress FEA model for the multilateral junctions. The model was used to analyze the wellbore stability of multilateral wells and study influences of wellbore parameters and drilling fluid density on wellbore stability at multilateral junctions. Simulation results show that the wellbore diameter insignificantly affects wellbore stability. When the angle between the main wellbore and branches enlarges to 45°, the equivalent plastic strain decreases by 0.0726, and the wellbores become more stable; when the angle is larger than or equal to 45°, the region prone to wellbore instability transfers from the multilateral junctions to the inner of multilateral wellbores. When the azimuth of wellbores is along the direction of the minimum horizontal principal stress, the equivalent plastic strain decreases by 78.2% and the wellbores are most stable. Moreover, appropriately increasing the drilling fluid density can effectively reduce the risk of wellbore instability at the multilateral junctions. A model has been developed that allows analysis of multilateral wellbore stability under seepage-stress coupling condition

    Collision strengths for transitions of Ni XXI

    No full text
    In this paper, we use Dirac R-matrix theory to calculate the collision strengths for electron impact excitation of Ni XXI with the Dirac atomic R-matrix code (DARC), which includes contributions of resonances, channel coupling, and relativity. A DARC calculation has been performed for transitions among 86 levels of (1s2) 2s22p4, 2s2p5, 2p6 and 2s22p33l (l = 0, 1, 2) configurations of Ni XXI. The GRASP code has been adopted for the description of target. A comparison is made with the results of Bhatia et al. for the collision strengths of five incident energies, 85, 170, 255, 340, and 425 Ryd, which use distorted wave calculations that do not include channel coupling. Effective collision strengths are calculated by averaging collision strengths over a Maxwellian velocity distribution. The accuracy of our calculations is assessed

    Transcriptome Analysis Identifies Key Candidate Genes Mediating Purple Ovary Coloration in Asiatic Hybrid Lilies

    No full text
    Lily tepals have a short lifespan. Once the tepals senesce, the ornamental value of the flower is lost. Some cultivars have attractive purple ovaries and fruits which greatly enhance the ornamental value of Asiatic hybrid lilies. However, little is known about the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries. To investigate the transcriptional network that governs purple ovary coloration in Asiatic hybrid lilies, we obtained transcriptome data from green ovaries (S1) and purple ovaries (S2) of Asiatic “Tiny Padhye”. Comparative transcriptome analysis revealed 4228 differentially expressed genes. Differential expression analysis revealed that ten unigenes including four CHS genes, one CHI gene, one F3H gene, one F3′H gene, one DFR gene, one UFGT gene, and one 3RT gene were significantly up-regulated in purple ovaries. One MYB gene, LhMYB12-Lat, was identified as a key transcription factor determining the distribution of anthocyanins in Asiatic hybrid lily ovaries. Further qPCR results showed unigenes related to anthocyanin biosynthesis were highly expressed in purple ovaries of three purple-ovaried Asiatic hybrid lilies at stages 2 and 3, while they showed an extremely low level of expression in ovaries of three green-ovaried Asiatic hybrid lilies during all developmental stages. In addition, shading treatment significantly decreased pigment accumulation by suppressing the expression of several unigenes related to anthocyanin biosynthesis in ovaries of Asiatic “Tiny Padhye”. Lastly, a total of 15,048 Simple Sequence Repeats (SSRs) were identified in 13,710 sequences, and primer pairs for SSRs were designed. The results could further our understanding of the molecular mechanisms of anthocyanin biosynthesis in Asiatic hybrid lily ovaries
    corecore